Sobolev-type inequalities for Dunkl operators
نویسندگان
چکیده
منابع مشابه
B N - type Dunkl operators
We construct several new families of exactly and quasi-exactly solvable BCN -type Calogero– Sutherland models with internal degrees of freedom. Our approach is based on the introduction of a new family of Dunkl operators of BN type which, together with the original BN -type Dunkl operators, are shown to preserve certain polynomial subspaces of finite dimension. We prove that a wide class of qua...
متن کاملGeneralized Dunkl-sobolev Spaces of Exponential Type and Applications
We study the Sobolev spaces of exponential type associated with the Dunkl-Bessel Laplace operator. Some properties including completeness and the imbedding theorem are proved. We next introduce a class of symbols of exponential type and the associated pseudodifferential-difference operators, which naturally act on the generalized Dunkl-Sobolev spaces of exponential type. Finally, using the theo...
متن کاملPoincaré–type Inequalities for Broken Sobolev Spaces
We present two versions of general Poincaré–type inequalities for functions in broken Sobolev spaces, providing bounds for the Lq–norm of a function in terms of its broken H1–norm.
متن کاملA Class of Sobolev Type Inequalities
In this paper, we prove that for any strictly convex polynomial, or more generally any strictly convex function satisfying appropriate conditions, there is an associated Sobolev type inequality.
متن کاملOn Inequalities of Hardy–sobolev Type
Hardy–Sobolev–type inequalities associated with the operator L := x · ∇ are established, using an improvement to the Sobolev embedding theorem obtained by M. Ledoux. The analysis involves the determination of the operator semigroup {e−tL∗L}t>0.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Functional Analysis
سال: 2020
ISSN: 0022-1236
DOI: 10.1016/j.jfa.2020.108695